36 research outputs found

    Establishment of Monitoring System to Detect Single Copy DNA Included in One Genome but not in Another Using Representational Difference Analysis

    Get PDF
    Polyrnerase chain reaction (PCR) -coupled subtractive procedure, representa-tional difference analysis (RDA) , is an efficient method to find the differences between two complex genomes. RDA has been applied to detect genetic lesions in cancer, the identification of unknown pathogens from the genomes, and the isolation of polymorphic markers. However, characterization of various clones obtained by RDA is time consuming and laborious work, and it is of great impor-tance to monitor whether RDA really works. To establish a monitoring system to detect single copy target DNA, we studied whether RDA could detect four fragments of non-human DNA which were added in one genome but not in another. We were able to successfully detect the target DNAs which were mixed at the ratio of single and ten copies per haploid genome using RDA with some modification of the original protocol. We confirmed that RDA was sensi-tive and effective enough to detect such genetic lesions as occurred in cancer cells. The target DNA used in this model could be utilized as a positive control in other applications of RDA

    Anti-integrin αvβ6 autoantibodies in patients with primary sclerosing cholangitis

    Get PDF
    [Background] Patients with primary sclerosing cholangitis (PSC) possess autoantibodies against biliary epithelial cells. However, the target molecules remain unknown. [Methods] The sera of patients with PSC and controls were subjected to enzyme-linked immunosorbent assays to detect autoantibodies using recombinant integrin proteins. Integrin αvβ6 expression in the bile duct tissues was examined using immunofluorescence. The blocking activity of the autoantibodies was examined using solid-phase binding assays. [Results] Anti-integrin αvβ6 antibodies were detected in 49/55 (89.1%) patients with PSC and 5/150 (3.3%) controls (P < 0.001), with a sensitivity and specificity of 89.1% and 96.7%, respectively, for PSC diagnosis. When focusing on the presence or absence of IBD, the proportion of the positive antibodies in PSC with IBD was 97.2% (35/36) and that in PSC alone was 73.7% (14/19) (P = 0.008). Integrin αvβ6 was expressed in bile duct epithelial cells. Immunoglobulin (Ig)G from 15/33 patients with PSC blocked integrin αvβ6-fibronectin binding through an RGD (Arg–Gly–Asp) tripeptide motif. [Conclusions] Autoantibodies against integrin αvβ6 were detected in most patients with PSC; anti-integrin αvβ6 antibody may serve as a potential diagnostic biomarker for PSC

    Low-Temperature Atmospheric Pressure Plasma Processes for “Green” Third Generation Photovoltaics

    Get PDF
    Special Issue: Plasma Processing of Materials for Energy Conversion and Storage.International audienceAtmospheric pressure plasmas (APPs) have achieved great scientific and technological advances for a wide range of applications. The synthesis and treatment of materials by APPs have always attracted great attention due to potential economic benefits if compared to low-pressure plasma processes. Nonetheless, APPs present very distinctive features that suggest atmospheric pressure operation could bring other benefits for emerging new technologies. In particular, materials synthesized by APPs which are suitable candidates for third generation photovoltaics are reviewed here

    Autophagy and mTOR signaling during intervertebral disc aging and degeneration

    Get PDF
    Degenerative disc disease is a highly prevalent, global health problem that represents the primary cause of back pain and is associated with neurological disorders, including radiculopathy, myelopathy, and paralysis, resulting in worker disability and socioeconomic burdens. The intervertebral disc is the largest avascular organ in the body, and degeneration is suspected to be linked to nutritional deficiencies. Autophagy, the process through which cells self-digest and recycle damaged components, is an important cell survival mechanism under stress conditions, especially nutrient deprivation. Autophagy is negatively controlled by the mammalian target of rapamycin (mTOR) signaling pathway. mTOR is a serine/threonine kinase that detects nutrient availability to trigger the activation of cell growth and protein synthesis pathways. Thus, resident disc cells may utilize autophagy and mTOR signaling to cope with harsh low-nutrient conditions, such as low glucose, low oxygen, and low pH. We performed rabbit and human disc cell and tissue studies to elucidate the involvement and roles played by autophagy and mTOR signaling in the intervertebral disc. In vitro serum and nutrient deprivation studies resulted in decreased disc cell proliferation and metabolic activity and increased apoptosis and senescence, in addition to increased autophagy. The selective RNA interference-mediated and pharmacological inhibition of mTOR complex 1 (mTORC1) was protective against inflammation-induced disc cellular apoptosis, senescence, and extracellular matrix catabolism, through the induction of autophagy and the activation of the Akt-signaling network. Although temsirolimus, a rapamycin derivative with improved water solubility, was the most effective mTORC1 inhibitor tested, dual mTOR inhibitors, capable of blocking multiple mTOR complexes, did not rescue disc cells. In vivo, high levels of mTOR-signaling molecule expression and phosphorylation were observed in human intermediately degenerated discs and decreased with age. A mechanistic understanding of autophagy and mTOR signaling can provide a basis for the development of biological therapies to treat degenerative disc disease

    Rheological Images of Poly(vinyl chloride) Gels. 6. Effect of Temperature

    No full text

    Involvement of Autophagy in Rat Tail Static Compression-Induced Intervertebral Disc Degeneration and Notochordal Cell Disappearance

    Get PDF
    The intervertebral disc is the largest avascular low-nutrient organ in the body. Thus, resident cells may utilize autophagy, a stress-response survival mechanism, by self-digesting and recycling damaged components. Our objective was to elucidate the involvement of autophagy in rat experimental disc degeneration. In vitro, the comparison between human and rat disc nucleus pulposus (NP) and annulus fibrosus (AF) cells found increased autophagic flux under serum deprivation rather in humans than in rats and in NP cells than in AF cells of rats (n = 6). In vivo, time-course Western blotting showed more distinct basal autophagy in rat tail disc NP tissues than in AF tissues; however, both decreased under sustained static compression (n = 24). Then, immunohistochemistry displayed abundant autophagy-related protein expression in large vacuolated disc NP notochordal cells of sham rats. Under temporary static compression (n = 18), multi-color immunofluorescence further identified rapidly decreased brachyury-positive notochordal cells with robust expression of autophagic microtubule-associated protein 1 light chain 3 (LC3) and transiently increased brachyury-negative non-notochordal cells with weaker LC3 expression. Notably, terminal deoxynucleotidyl transferase dUTP nick end labeling-positive apoptotic death was predominant in brachyury-negative non-notochordal cells. Based on the observed notochordal cell autophagy impairment and non-notochordal cell apoptosis induction under unphysiological mechanical loading, further investigation is warranted to clarify possible autophagy-induced protection against notochordal cell disappearance, the earliest sign of disc degeneration, through limiting apoptosis

    Inhibition of Autophagy at Different Stages by ATG5 Knockdown and Chloroquine Supplementation Enhances Consistent Human Disc Cellular Apoptosis and Senescence Induction rather than Extracellular Matrix Catabolism

    Get PDF
    The intervertebral disc is the largest avascular organ. Autophagy is an important cell survival mechanism by self-digestion and recycling damaged components under stress, primarily nutrient deprivation. Resident cells would utilize autophagy to cope with the harsh disc environment. Our objective was to elucidate the roles of human disc cellular autophagy. In human disc cells, serum deprivation and pro-inflammatory interleukin-1β (IL-1β) stimulation increased autophagy marker microtubule-associated protein 1 light chain 3 (LC3)-II and decreased autophagy substrate p62/sequestosome 1 (p62/SQSTM1), indicating enhanced autophagy. Then, RNA interference (RNAi) of autophagy-related gene 5 (ATG5), essential for autophagy, showed decreases in ATG5 protein (26.8%–27.4%, p < 0.0001), which suppressed early-stage autophagy with decreased LC3-II and increased p62/SQSTM1. Cell viability was maintained by ATG5 RNAi in serum-supplemented media (95.5%, p = 0.28) but reduced in serum-free media (80.4%, p = 0.0013) with IL-1β (69.9%, p = 0.0008). Moreover, ATG5 RNAi accelerated IL-1β-induced changes in apoptosis and senescence. Meanwhile, ATG5 RNAi unaffected IL-1β-induced catabolic matrix metalloproteinase release, down-regulated anabolic gene expression, and mitogen-activated protein kinase pathway activation. Lysosomotropic chloroquine supplementation presented late-stage autophagy inhibition with apoptosis and senescence induction, while catabolic enzyme production was modest. Disc-tissue analysis detected age-related changes in ATG5, LC3-II, and p62/SQSTM1. In summary, autophagy protects against human disc cellular apoptosis and senescence rather than extracellular matrix catabolism
    corecore